Posts

Adapting AI for the Planet

The last couple of months have been interesting from a climate viewpoint - we’ve seen a record number of climate related disasters around the globe - drought, floods, fires, heat waves…..and it looks like this is probably going to be what our planet will look like in the near future. Add to that the COP26 conference that is scheduled for October 31st - and climate, sustainability and technology are front page news! So, let’s talk about one of the technologies in the news - artificial intelligence (AI) and its impact on climate, water, agriculture, energy, forestry, ecosystems and other sectors in clean technology . AI and its subset of tools - machine learning (ML), data science and statistics - are being touted as one of the key technologies in solving the problems facing the planet today. And while these technologies are certainly powerful - applying them effectively to solve problems in clean tech is another issue altogether. AI has been used by scientists in different clean tech se

AI, Healthcare and the Environment

When discussing complicated topics like artificial intelligence (AI), it’s often easier to understand the issues in a sector like clean technology by comparing what’s happening in other sectors like manufacturing or healthcare. So, this month, let’s talk about building useful artificial intelligence(AI) tools, the need for expertise in adapting these technologies, and how our experience using AI in other sectors is similar to what we experience in clean technology. Since we’re still in a pandemic, let’s take a look at healthcare and clean technology. To start with, what do these two seemingly very different sectors have to do with each other? Quite a lot, as it happens. First, the environment has a huge impact on public health - think wildfire smoke or poor air quality and the impacts on cardiovascular health and asthma in people. Second, monitoring the environment allows us to better understand the health of communities - for example, monitoring wastewater for SARS-Cov2, the virus cau

New products in progress!

We're in the processes of building a couple of fantastic new offerings that many folks in our community have asked for - so blog posts will be limited for a few months. Our jobs portal will still be updated regularly to make sure that all our members can keep up with what's happening in the sector. We can't wait to share what's happening at our end!

Corporate sustainability and carbon markets: The role of data science

  Every Earth Day we hear from companies around the world about their sustainability efforts - the gallons of water they have saved, the reductions in energy use, the systems they have converted from fossil-fuel to renewable energy, the ecosystems they have restored and, more recently the amount of carbon they have offset. On the face of it, these are amazing and hopeful numbers - the very fact that corporations are paying so much attention to sustainability and the environment is testament to the fact that consumer and citizen pressure is yielding results. In fact, with every successive year, it seems that companies and organizations are able to sequester more carbon, minimize greenhouse gas emissions and thus mitigate climate change.     What allows companies to make these claims - especially with respect to carbon and greenhouse gas emissions? The way that most companies claim these credits is through carbon markets or “cap and trade” programs. In these programs, a community or a no

Partnership Announcement: Data Week with General Assembly

Image
  We are excited to partner with our friends   @generalassembly   for Data Week — a   free virtual summit May 17-21   filled with workshops and panel discussions to help you harness data to tell compelling stories and uncover trends!   Click here to check out the schedule & RSVP today!   

Let's talk Climate and Data Science - free webinar on March 25th at 10.30 am PT

  What is climate tech? How much is the market worth - hint it's in trillions of dollars. How has it grown over the last decade? What are the trends driving the adoption of data science, AI and machine learning in the climate science space? What are the jobs like and what skills are required to work at the intersection of data science and climate? Join us for a lively discussion on this topic on March 25th !

Interview with Women in Clean Technology and Sustainability

  It was an honor and a pleasure be interviewed by Women in Clean Technology and Sustainability (WCS) as their member of the month. WCS is a non-profit organization headquartered in California that fosters community and networking among professionals in the green economy and has members from all over the United States and the world. We had a wide ranging discussion that covered the inspiration behind Ecoformatics, the opportunities for jobs and startups at the intersection of data science and clean technology and where we as a company can help. Read excerpts of the interview below or check out the entire interview at WCS' website here ! ------------------------------------------------------------------------------------------------------------ ECOFORMATICS IS YOUR BRAINCHILD, WHAT DOES IT DO? Ecoformatics was born out of an unmet need that I discovered while working as a data scientist and environmental engineer for several entities. The planet is facing so many challenges. At the

Data Science in Clean Technology: Looking back and looking forward to 2021

  Happy 2021 everyone! The year certainly started with a bang - if there’s one thing we can’t say - it’s that January has been a boring month.   With the change in administrations in the United States, we’ve seen several changes in climate and clean technology policy which will have significant impacts on the state of the market, startups in the field, funded research and technology developments. And this is likely to extend to the use of machine learning, AI, smart sensors and the other aspects of data science in clean technology. So, let’s take a quick look at what happened at the intersection of data science and clean technology in 2020 and what the prospects for 2021 look like.   Looking back at 2020 :     2020 of course, is the year like no other - divided between pre-pandemic and what happened as the pandemic took hold globally. So, how did that influence the trends in clean technology and the application of data science in the different sectors?   Pre-pandemic, there were some c

Data Science for the Grid, Renewables, Buildings and the Energy Sector

  It's time for our last two events for us in 2020 - what a crazy year it's been!  Continuing our theme of exploring data science in different clean technology sectors, we're doing to be focusing on the energy sector this month.   On Friday, December 18th at 2 pm PT, we'll be holding a free webinar exploring the market and opportunities for data science in the energy sector - with a focus on renewables, the grid and buildings.     And then, on Sunday, December 20th at 11 am PT, we'll host a hands-on workshop where we'll look at the types of problems in the energy sector where data science is being applied, what data sources are useful and where to find them and how do we integrate physics based models and machine learning into our solutions. 

Data Science for the Energy-Food-Water Nexus

  One of the most interesting aspects of working in clean technology is the interaction between different sectors in the space - the Food-Energy-Water nexus, for example.   What is the food-energy-water nexus? Well, not being in the Star Trek universe or any other science fiction arena, we’re definitely not talking about black holes of energy where food and water go to die :)! What we are talking about when we talk about the nexus between different clean tech sectors is - how do these sectors interact with each other? How complex are the interactions and can the relationships between them be described? In the case of the energy-water-food nexus, we’re exploring the interactions between the energy, water and food sectors. For example, we need water to grow food and produce energy, but energy is also needed to pump out groundwater and to process food.   Just for fun, let’s take a look at some numbers on the food-energy-water nexus from the UN and FAO. Let’s start with the biggest one - a

Predicting floods using models for Covid and other infectious diseases

  What do Covid-19, social networks, traffic congestion and floods have in common? On the face of it, the answer would seem to be - nothing. But interestingly enough, all these systems can be represented in similar fashions - as nodes and networks with spatial and temporal effects.   So, scientists and researchers often try to see if models and ideas developed to solve problems in fields with similar representations can be adapted to problems in other fields.   A really interesting study was published in Nature   a couple of months ago, where researchers explored what happened when they adapted models used in understanding how infectious diseases like Covid spread to predicting floods in cities and urban systems.   How have floods and their impacts typically been modeled and why do people care? To start with, people care about flooding because it directly impacts their lives - when do areas have to be evacuated, how long should the evacuation last, and what are potential health consequ

Oceans, Ships and Data Science

  What comprises the water sector? If you asked ten people working in the sector, you’d probably get ten different opinions! And that’s because there are so many aspects of working with water and water technology.   There’s drinking water - which involves figuring out how much water is available (water resources management), how to treat it, how to deliver it effectively and at an acceptable price to customers. Then there’s wastewater - how do you treat, remove and recycle wastewater, both residential and industrial, to acceptable levels. Next, we come to the interactions between water and other built systems - hydropower and irrigation being the largest. Then, there’s the impact of water-related disasters - floods and tsunamis for example. Finally, we’ve got natural resources management - where we explore, monitor and evaluate the condition of natural water bodies - lakes, rivers, glaciers and the ocean - and how they interact with other systems.   The fun part about working with wate

Moonshots, Models, IoT and Machine Learning in Agriculture

  What do Google, Climate Corporation, early stage startups in farm robotics, and researchers trying to figure out how to feed the world sustainably have in common? They’re all grappling with one of the toughest challenges of working with natural systems - how do you work with data that is sparse, unevenly distributed and with systems that have so many connections and interactions with other systems?     Before the advent of cheap sensors that are connected to phones, easily accessible satellite data and drones that can fly over fields quickly and inexpensively -     scientists in companies and academia worked on developing plant and crop models that incorporated as many aspects of the farm and as much data as was available so that they could understand and predict what was likely to happen on the field. Understandably, the forecasts took some time to produce and as the models grew more complex, issues about how to estimate model parameters and the uncertainty associated with the resul

Innovation In The Water Sector

  I was at   Imagine H2O’s “Water Innovation Week” conference   this week - virtually, of course! Imagine H2O is a wonderful resource and accelerator for startups in the water space, and their program this week was an excellent representation of water’s central role, not just in our daily lives, but also in the clean technology sector in general.     In most of the developed world, water isn’t really at the forefront of most people’s minds. Turn on the tap, you get clean, free flowing water - and unless you’re in the water sector, you’re probably not thinking about things like aging water infrastructure, budgets and how to fund water infrastructure, how to ensure that water is used efficiently, that wastewater is effectively treated and that tradeoffs between the water allocated to different sectors are discussed and managed equitably. In fact, unless there’s a storm or a flood or a leak in the water pipes in your house - water is not your primary concern.   And that is how it should b

Agtech, Farmtech, Foodtech, Livestock tech - the market for agriculture and data science over the last decade

Image
  It’s always interesting to take a look at how trends and predictions about new technologies and their ramifications for different sectors pan out. And that’s no different when it come to data science and clean technology.   A graph that often comes up when discussing how new technologies develop is the “Gartner cycle of hype”. This is the idea that all new ideas, concepts and technologies invariably go through several stages in their development - they all start with excitement as the promise of new technology opens up possibilities that seem limitless, followed by a crash course in reality when what’s actually possible collides with dreams, and finally a steady look at immediate solutions that can build towards the dream. The last stage is when startups gain traction or are acquired and larger companies start building teams to work with the new technology. So, how has agriculture and data science - or AgTech worked out?     It’s definitely been an interesting ride since the concept