Posts

Showing posts from August, 2020

Changing forests, Changing climate and Changing economies

  One of the fascinating aspects of working with data in clean technology is how variable the data are over space and time. So, as scientists trying to understand how different systems interact with each other, it usually means that we’re building several models that work together so that both the spatial and temporal aspects are accounted for.     And that’s especially true in the forestry sector. Forests are incredibly important ecosystems - untouched forests in the Amazon, Indonesia, the Congo Basin and other areas sequester carbon, provide habitat for species that cannot be found elsewhere and have been found to be important controllers of weather patterns locally and regionally. Additionally, second growth forests and agro-forests supply timber, medicines and other products that contribute close to $583 billion dollars every year to the global economy.   Further, as countries around the globe work on combating climate change, REDD+ payments or payments to developing countries for

Communicating As A Data Scientist

Image
  Wow, this has been a crazy week here in the San Francisco Bay Area! If a pandemic wasn’t enough, we now have over 300 fires burning in the area as a result of an unusual summer thunderstorm accompanied by lightning strikes.     It’s one of the aspects of climate change - that weather becomes more extreme. So, the western US and Australia as well as other areas see less precipitation, or precipitation that is unusual in amounts and timing, warmer temperatures. Thus, drier, warmer conditions that are ideal for these kind of extreme events become more prevalent - and hence, more disasters.     As professionals working in clean technology, we often get tasked with building the models for these systems, understanding what’s happening on the ground and developing new technologies to help solve these problems.     The one thing that many of us don’t really explore is the whole aspect of communicating the science and what the data are telling us.   This aspect often gets relegated to science

When AI and Machine Learning come to the forests

  A big thank you to everyone who joined us last weekend for a lively and interesting discussion on data engineering and how to build prototypes that access satellite imagery using Google Earth Engine and Python.   It’s always fun to talk about satellites, imagery and how to get things to work in many different clean technology sectors - agriculture, water, energy, climate and disaster management among them.     Today, let’s talk about one sector that doesn’t get as much attention - forestry.   If you heard the the words forests and satellite imagery in one sentence, what comes to your mind? Deforestation? Reforestation? Wildfires? All three?   Managing our forests sustainably is key to protecting the environment in so many different ways - forests have a huge impact on climate, on ecosystem services and on the livelihoods of communities that rely on them. However, the challenge is that most forests are hard to access and data is often difficult to verify on the ground.     But that’s

When Satellite Data Improves - What Happens in Clean Technology?

  In June this year,   we had a lively discussion and online workshop on remote sensing data   and how monitoring processes occurring on the Earth was why the Landsat satellite program was launched in the 1970s - a program that’s still running today.     But here’s an interesting question that came up in our conversation - since water, agriculture, energy and other clean tech sectors have been using remote sensing data for such a long time - what is so different now?     To answer that question, let’s first talk about how satellite data is used in clean technology. The sectors where satellite data, and data science in general, are widely used both commercially and in research and development are agriculture, energy, water, climate and disaster management.   So, what are the different uses of satellite data in each of these sectors?   Let’s take agriculture first.   Researchers and scientists have been using satellite data since the 1970s in the agricultural sector. The first product fr